NEXTGENPCR

APPLICATION NOTE

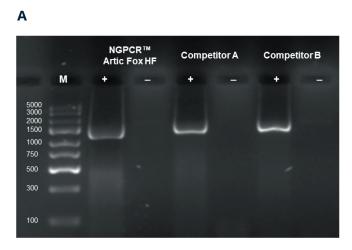
RESEARCH USE ONLY (RUO)

NEXTGENPCR™ 16S FULL GENE AMPLIFICATION KIT

HIGHLIGHTS

- · Single-day laboratory workflow suited for standard microbiological laboratories
 - Ultrafast amplification of full length 16S rDNA sequences in ≤ 21 minutes
- · Complete PCR kit including all necessary chemistries for target sequence amplification
- · High fidelity sequence data generation for V1–V9 regions allowing species-level determination
 - · Suitable for complex and difficult to amplify samples, i.e. polymicrobial specimens

BACKGROUND


Sequencing of the 16S ribosomal DNA (16S rDNA) gene is a well-established method to identify bacterial species in biological specimens. Taxonomic identification using 16S sequence is based on exploiting the unique combination of hyper conserved and variable regions (V1 – V9). The NextGenPCR $^{\text{TM}}$ 16S Full Gene Amplification Kit is a complete PCR assay solution intended for ultrafast analysis of bacterial composition in a biological specimen. The kit includes all necessary materials (primer oligonucleotides, ready-to-use polymerase master mix and genomic bacterial DNA control) to amplify the full length 16S rDNA gene in \leq 21 minutes total cycling time.

Performance of the NextGenPCR™ 16S Full Gene Amplification Kit was evaluated using DNA template material isolated from the Microbial Community Standard (ZymoBIOMICS) using a MagNA Pure 96 System (Roche). Using 10 ng gDNA template as input and the cycling program listed in Table 1, amplicons were generated on a NextGenPCR™ Thermal Cycler using either NextGenPCR™ Arctic Fox HF Chemistry-2× (Molecular Biology Systems) or a competitor's polymerase mix, of which two were tested. Amplicons were barcoded using a Rapid Barcoding Kit (SQK-RBK114.96) and sequenced using a Flow Cell R9.4.1 on a MinION MK1B sequencer (Oxford Nanopore Technologies). Sequences were analyzed using a custom bioinformatics pipeline (MABA16S, available through GitHub).

CYCLING CONDITIONS FOR THE SEQUENCED SAMPLES						
	Cycle Nº	Time	Temp	Total cycling		
NextGenPCR™ Arctic Fox HF	1	30 sec	98 °C	21 min		
	30	10 sec	98 °C			
		15 sec	54 °C			
		15 sec	68 °C			
Competitor A	1	30 sec	98 °C	43 min		
	30	10 sec	98 °C			
		15 sec	54 °C			
		60 sec	68 °C			
Competitor B	1	30 sec	98 °C	. 36 min		
	30	10 sec	98 °C			
		15 sec	54 °C			
		30 sec	68 °C			

Analysis of the microbial community standard sample mix revealed excellent amplification results for all three tested chemistries, with clear bands at the ~1,500 bp range corresponding to the full length 16S ribosomal DNA gene sequence (Figure 1A). Sequencing amplicons for 26 hours on a MinION flow cell yielded the highest number of classified reads for the NextGenPCRTM Arctic Fox HF Chemistry library (604,091 reads) as compared to competitor A (323,765 reads) and competitor B (149,519 reads) libraries while also having the shortest total amplification time of 21 minutes. In all three cases, the number of reads mapping to other bacterial species was $\leq 0.5\%$ and the number of unmappable reads was $\leq 0.1\%$ (Figure 1B), demonstrating that the NextGenPCRTM Thermal Cycler is compatible with multiple polymerase mixes and generates excellent quality sequence data.

AMPLIFICATION OF ~1500BP FRAGMENT OF THE 16S FULL GENE SEGMENT

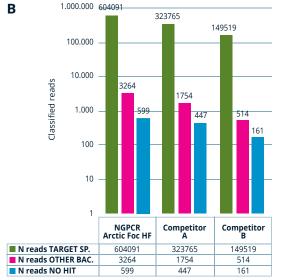
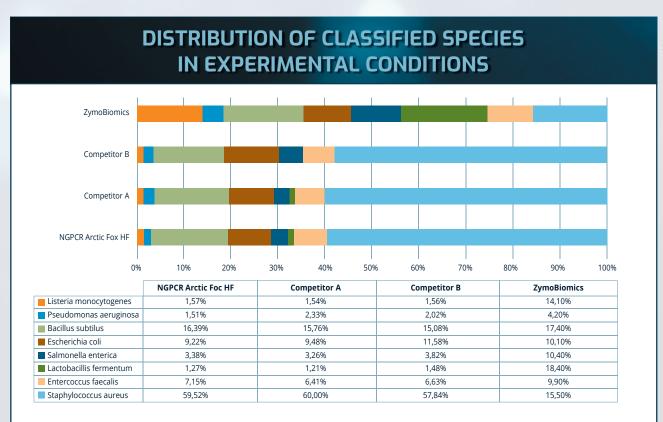
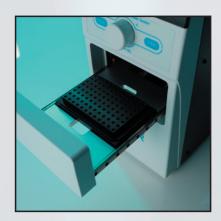
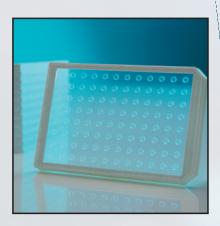



Figure 1.

- **(A)** Amplification of ~1500bp fragment of the 16S full gene segment using different polymerases and cycling programs on the NextGenPCR™ Thermal Cycler. The starting template was ~10 ng input Microbial Community Standard (+), with a non-template control (-) for each condition.
- **(B)** Number of classified reads was highest using the NextGenPCR Arctic Fox HF Chemistry as compared to competitors.

Figure 2. Distribution of classified species in experimental conditions as compared to the theoretical composition of the ZymoBIOMICS Microbial Community Standard.


CONCLUSION


Integration of ultrafast amplification of the 16S gene using NextGenPCR™ products and rapid sequencing provides a promising new avenue for bacterial identification in a biological sample within a single working day. The NextGenPCR™ 16S Full Gene Amplification Kit offers several pronounced advantages over existing bacterial identification methods such as Sanger sequencing and MALDI-TOF, including the capability to simultaneously detect multiple organisms in a sample and the ability to confidently determine negative results if no reads are obtained.

Find out more about NextGenPCR™ ultrafast PCR products and applications on our website over at: www.nextgenpcr.com

RELATED PRODUCTS				
P/N	Product name	Packaging size		
#10001	NextGenPCR™ Thermal Cycler	1 unit		
#10101/10102	NextGenPCR™ Semiautomatic Heat Sealer	1 unit		
#20102	NextGenPCR™ Sealing Anvil 96×20 μL	1 unit		
#20301/20305	NextGenPCR™ Pipetting Anvil 96×20 μL	1 unit in white/black color		
#33602/33603	EZtrieve™ Microplates 96×20 μL	50/500 microplates per pack		
#30110/30111	EZtrieve™ Aluminum Heat Seals	50/500 sheets per pack		
#50034	NextGenPCR™ 165 rDNA Full Gene Amplification Kit	100×20 µL reactions per pack		

DISCLAIMER

NextGenPCR machines and consumables are for Research Use Only.

NextGenPCR is a trademark of Molecular Biology Systems, B.V.

All other trademarks are those of their respective owners.

© 2024 Molecular Biology Systems, B.V. All Rights Reserved.

